

Reliability Report

General Information

Product Line MV3S

Product Description powerSTEP

Product division I&PC

Package VFQFPN 11x14

BCD6S (UA53) + PMOS OFT1 Silicon process technology

(ODOC)

Locations Wafer fab location **CATANIA** CARSEM-S **Assembly plant location MALAYSIA**

Preliminary Reliability Pass assessment

DOCUMENT HISTORY

Version	Date	Pages	Author	Comment
1.0	02-Feb-16	14	G. D'Angelo	Original document
1.1	19-Oct-16	14	G. D'Angelo	Updated report

Issued by Approved by

Gianfranco D'Angelo Alceo Paratore

Version 1.1 Page 1/14

Table of Contents

1	API	PLICABLE AND REFERENCE DOCUMENTS	<i>3</i>
2	RE	ELIABILITY EVALUATION overview	4
2	2.1	Objectives	4
2	2.2	Conclusion	4
3	<i>De</i> ı	vice Characteristics	5
3	3.1	Device description	5
	3.1.1	1 Generalities	5
	3.1.1	1 Pin connection	6
	3.1.2	2 Block diagram	7
	3.1.3	3 Package outline/Mechanical data	8
3	3.2	Traceability	9
4	Tes	sts results summary	10
4	4.1	LOTs information	10
4	4.2	Test plan and results summary	11
5	Tes	sts Description & detailed results	12
ţ	5.1	Die oriented tests	12
	5.1.	1 High Temperature Operating Life	12
	5.1.2	2 High Temperature Storage	12
ţ	5.2	Package oriented tests	13
	5.2.1	-	
	5.2.2	-	
	5.2.3	3 Autoclave	13
	5.2.4	4 Temperature Humidity Bias	13
ţ	5.3	Electrical Characterization Tests	14
	5.3.	1 Latch-up	14
	5.3.2	2 F.S.D.	14

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference Short description

AEC-Q100 : Stress test qualification for integrated circuits 0061692 : Reliability tests and criteria for qualifications

Version 1.1 Page 3/14

2 RELIABILITY EVALUATION OVERVIEW

2.1 Objectives

This report contains the reliability evaluation of MV3S device diffused in CATANIA and assembled in VFQFPN 11x14 in CARSEM-S MALAYSIA.

According to Reliability Qualification Plan, below is the list of the trials performed:

Die Oriented Tests

- High Temperature Operating Life
- High Temperature Storage Life

Package Oriented Tests

- Preconditioning
- Temperature Cycling
- Autoclave
- Temperature Humidity Bias

Electrical Characterization

- ESD resistance test
- LATCH-UP resistance test

2.2 Conclusion

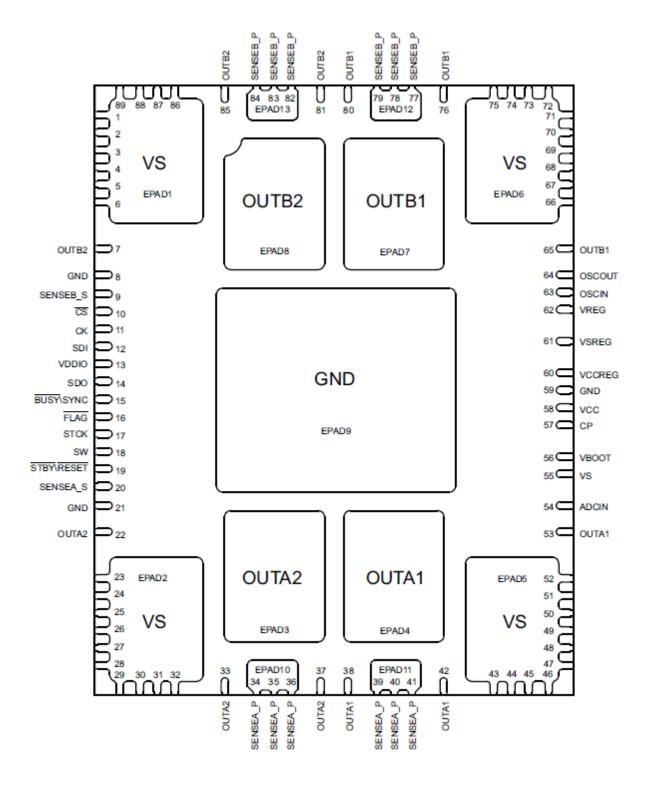
Taking in account the results of the trials performed the MV3S diffused in CATANIA and assembled in VFQFPN 11x14 in CARSEM-S MALAYSIA can be qualified from reliability viewpoint.

Version 1.1 Page 4/14

3 DEVICE CHARACTERISTICS

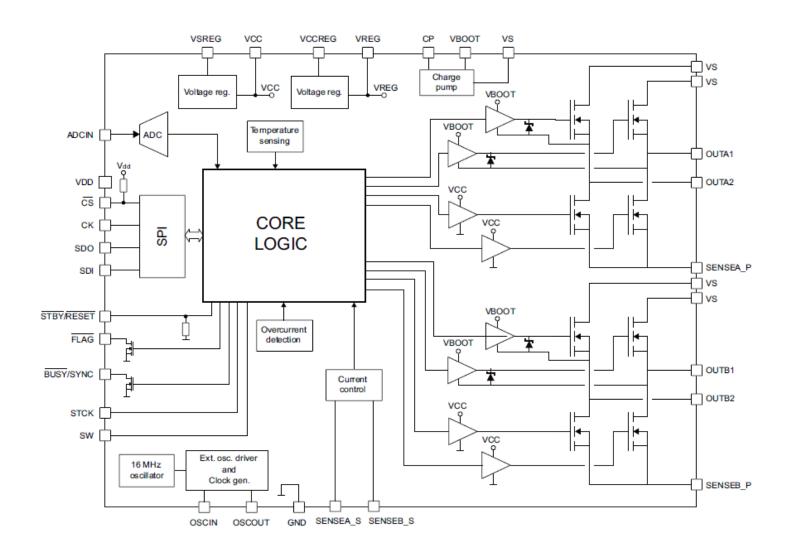
3.1 Device description

3.1.1 Generalities


The MV3S is a system-in-package integrating 8 N-channel 16 m Ω MOSFETs for stepper applications up to 85 V with a SPI programmable controller, providing fully digital control of the motion through a speed profile generation and positioning calculations.

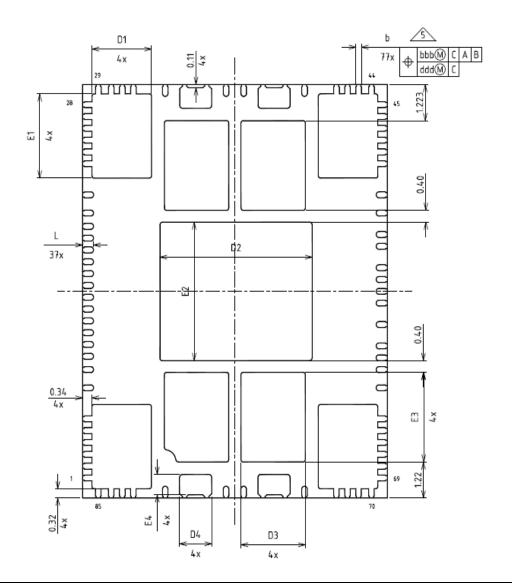
It integrates a dual low RDS (on) full bridge with embedded non-dissipative overcurrent protection. The device can operate with both voltage mode driving and advanced current control fitting different application needs.

Version 1.1 Page 5/14


3.1.1 Pin connection

Version 1.1 Page 6/14

3.1.2 Block diagram



Version 1.1 Page 7/14

3.1.3 Package outline/Mechanical data

	DATABOOK (mm)				
REF.	MIN.	TYP.	MAX.		
Α	0.80	0.90	1.00		
A1	0.00	0.02	0.05		
b	0.15	0.2	0.25		
D		11 BSC			
E		14 BSC			
D1	2	2.15	2.25		
E1	2.1	2.85	2.95		
D2	5.35	5.5	5.6		
E2	4.54	4.69	4.19		
D3	2.11	2.32	2.42		
E3	2.88	3.03	3.13		
D4	1	1.15	1.25		
E4	0.54	0.69	0.19		
L	0.3	0.4	0.5		
aaa		0.05			
bbb		0.1			
ccc	0.1				
ddd	0.05				
eee	0.08				
N		85			

Version 1.1 Page 8/14

3.2 Traceability

Wafer fab information (UA53)				
Wafer fab manufacturing location	CATANIA			
Wafer diameter	8 inches			
Wafer thickness	280µm			
Silicon process technology	BCD6S			
Die finishing back side	Cr/NiV/Au			
Die size	2185x3772 μm			
Bond pad metallization layers	AICu/TiNARC			
Passivation	TEOS/SiN/Polymide			
Metal levels	4			
W	/afer fab information (OD0C)			
Wafer fab manufacturing location	CATANIA			
Wafer diameter	8 inches			
Wafer thickness	200µm			
Silicon process technology	P.MOSFET OFT1			
Die finishing back side	Ti/NiV/Ag			
Die size	1800x2500 μm			
Bond pad metallization layers	AlCu/Ti/TiN			
Passivation	TEOS/SiN			
Metal levels	1			

Assembly Information			
Assembly plant location	CARSEM-S MALAYSIA		
Package description	VFQFPN 11x14		
Molding compound	G770 family		
Wires bonding materials/diameters	Cu 2.0 mils / 1.3 mils		
Die attach material	QMI529HT glue for PMOS die QMI519 (UA53 die)		
Lead solder material	Sn		

Version 1.1 Page 9/14

4 TESTS RESULTS SUMMARY

4.1 **LOTs information**

Lot ID #	Silicon Rev.	Comments
1a,1b,1c	AAA	No Passivation on MOS
2,3,4	AAA	-

Version 1.1 Page 10/14

4.2 Test plan and results summary

D	Die Oriented Tests							
Test	Method	Conditions		Sample Size _			Dti	Daguita
			L	Lot 1a	Lot 1b	Lot 1c	Duration	Results
HTOL	High Temperature Operating Life							
	On chipboards	Tj=150°C Vs=85V		77	-	-	1000h	PASSED
HTSL	High Temperature Storage							
	No bias	Tamb=150°C		25	25	25	1000h	PASSED

F	Package Orien	ted Tests					
Test	Method	Conditions	S	Sample Size			
			Lot 2	Lot 3	Lot 4	Duration	Results
PC	Pre-Condition	ning: Moisture sensitivity level 3					
		192h 30°C/60% - 3 reflow PBT 260°C	75	75	75	-	PASSED
AC	Autoclave						
	PC before	121°C 2atm	25	25	25	96h	PASSED
TC	Temperature	Cycling					
	PC before	Temp. range: -50/+150°C	25	25	25	1000cy	PASSED
THB	Temperature Humidity Bias						
	PC before	Ta=85°C/85%RH Vboot=100V, Vs=85V	25	25	25	1000h	PASSED

	Electrical Characterization Tests					
Test	Method	Conditions	Sample Size		_	
			Lot 1a	Duration	Results	
ESD	Electro Static Discharge					
	Human Body Model	+/- 2kV	3	-	PASSED	
	Charge Device Model	+/- 500V (750V on corner pins)	3	-	PASSED	
LU	Latch-Up					
	Over-voltage and Current Injection	Tamb=125°C Jedec78	6	-	PASSED	

Version 1.1 Page 11/14

5 TESTS DESCRIPTION & DETAILED RESULTS

5.1 Die oriented tests

5.1.1 High Temperature Operating Life

This test is performed like application conditions in order to check electromigration phenomena, gate oxide weakness and other design/manufacturing defects put in evidence by internal power dissipation.

The flow chart is the following:

- Initial testing @ Ta=25°C
- Check at 168 and 500hrs @ Ta=25°C
- Final Testing (1000 hr.) @ Ta=25°C

5.1.2 High Temperature Storage

The device is stored in unbiased condition at the max. temperature allowed by the package materials, sometimes higher than the max. operative temperature.

The scope is to investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress-voiding

The flow chart is the following:

- Initial testing @ Ta=25°C
- Check at 500hrs @ Ta=25°C
- Final Testing (1000 hr.) @ Ta=25°C

Version 1.1 Page 12/14

5.2 Package oriented tests

5.2.1 Pre-Conditioning

The device is submitted to a typical temperature profile used for surface mounting, after a controlled moisture absorption.

The scope is to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.

5.2.2 Thermal Cycles

The purpose of this test is to evaluate the thermo mechanical behavior under moderate thermal gradient stress. Test flow chart is the following:

- Initial testing @ Ta=25°C.
- Readout @ 500 cycles.
- Final Testing @ 1000 cycles @ Ta=25°C.

TEST CONDITIONS:

- Ta= -50°C to +150°C(air)
- 15 min. at temperature extremes
- 1 min. transfer time

5.2.3 Autoclave

The purpose of this test is to point out critical water entry path with consequent corrosion phenomena related to chemical contamination and package hermeticity.

Test flow chart is the following:

- Initial testing @ Ta=25°C.
- Final Testing (168hrs) @ Ta=25°C.

TEST CONDITIONS:

- P=2.08 atm
- Ta=121°C
- test time= 168 hrs

5.2.4 Temperature Humidity Bias

The test is addressed to put in evidence problems of the die-package compatibility related to phenomena activated in wet conditions such as electro-chemical corrosion.

The device is stressed in static configuration approaching some field status like power down. Temperature, Humidity and Bias are applied to the device in the following environmental conditions => Ta=85°C / RH=85%.

Input pins to Low / High Voltage (alternate) to maximize voltage contrast.

Test Duration 1000 h.

The flow chart is the following:

- Initial testing @ Ta=25°C
- Check @ 168 and 500hrs
- Final Testing (1000 hr.) @ Ta=25°C

Version 1.1 Page 13/14

5.3 Electrical Characterization Tests

5.3.1 Latch-up

This test is intended to verify the presence of bulk parasitic effects inducing latch-up.

The device is submitted to a direct current forced/sinked into the input/output pins. Removing the direct current no change in the supply current must be observed.

Stress applied:

condition	NEG. INJECTION	POS. INJECTION	OVERVOLTAGE
IN low	-100mA	Inom+100mA	1.5 x VDD or MSV or AMR,
			whichever is less
IN high	-100mA	Inom+100mA	1.5 x VDD or MSV or AMR,
			whichever is less

5.3.2 E.S.D.

This test is performed to verify adequate pin protection to electrostatic discharges.

The flow chart is the following:

Initial testing @ Ta=25°C

• ESD discharging @ Ta=25°C

• Final Testing @ Ta=25°C

TEST CONDITIONS:

Human Body Model
ANSI/ESDA/JEDEC STANDARD JES001

CDF-AEC-Q100-002

o Charge Device Model ANSI/ESD STM 5.3.1 ESDA – JEDEC JESD22-C101

CDF-AEC-Q100-011

Version 1.1 Page 14/14

Public Products List

Publict Products are off the shelf products. They are not dedicated to specific customers, they are available through ST Sales team, or Distributors, and visible on ST.com

PCI Title: Additional final test's site for POWERSTEP01 in ST Calamba (Philippines) and implementation of the passivated PMOS.

PCI Reference: AMG/17/10082

Subject: Public Products List

Dear Customer,

Please find below the Standard Public Products List impacted by the change.

		<u> </u>	
POWERSTEP01	POWERSTEP01TR		
	. 011211012101111		

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved